08:26, 22 июля 2009   Просмотров: 1739

Электроэрозионная обработка металлов

Автор: Александр Гуща, специально для EquipNet.ru
Фотографии с сайтов p-p-k.narod.ru, antifabrika.ru

Согласно статистике: 90% отечественного производства все еще базируется на механических методах обработки – шлифовании и полировании, фрезеровании и расточке. И вопрос тут даже не в качестве и прецизионности процесса, а в количестве отходов в виде стружки и угара. В некоторых случаях проблема металлического мусора решается штамповкой и использованием порошковой проволоки, но это лишь способ временно уйти от проблемы. Настоящим решением стала электрофизическая обработка, включающая в себя помимо ультразвуковой и электроннолучевой технологии еще и электроэрозионную.

Электроэрозионная обработка

По сути, электроэрозионная обработка является своего рода победой над природой. Ни для кого не секрет, насколько разрушительной бывает атмосферное электричество. Именно молния натолкнула ученых на серию экспериментов, доказавших, что электрический разряд при особых условиях способен, словно инструмент скульптора, создавать детали повышенной сложности.

Рабочим инструментом в большинстве случаев служит латунная тонкая проволока, способная многократно изгибаться под нужным углом. Мягкий материал находится под высоким напряжением, показатели которого выбираются таким образом, чтобы нагрев из-за собственного сопротивления не расплавил проволоку. При съемке на высокоскоростную камеру легко заметить многочисленные искры, появляющиеся в месте контакта проволоки и металла заготовки. Даже при очень высоком квалитете шероховатости соприкосновение будет неполным: образуются проводящие мосты субмикронного сечения, нагревающиеся из-за наличия сопротивления. Разогрев до 10000 градусов происходит мгновенно, поэтому некоторые металлы не просто испаряются, а сублимируют. С точки зрения физической химии высокое термическое воздействие разрушает кристаллическую решетку, и ионы металла отрываются от поверхности. Визуально же кажется, что латунная проволока «разъедает» основной металл, словно кислота. Это и дало название методу, ведь с латинского «разъедание» звучит, как «эрозия». Т.о. проволока медленно погружается в заготовку, отверстие в которой в точности повторяет контур латунного инструмента.

Электроэрозионная технология применяется, когда обработка на традиционных механических станках затруднена или нерентабельна из-за отходов, повышенной твердости материала основы

В некоторых случаях в электроэрозионной обработке используются источники тока импульсного типа с частотой от 50 герц до сотен килогерц, при этом каждый импульс удаляет некоторое приблизительно одинаковое количество ионов. Увеличение частоты означает снижение мощности и, как следствие, меньшую скорость обработки в обмен на повышающийся квалитет шероховатости обработанной поверхности. Выбор латуни обусловлен высоким уровнем теплопроводности (в некоторых случаях используются более дорогие эрозионные материалы из тугоплавких металлов и сплавов). Длительность разряда выбирается минимальной, чтобы испаренные ионы не осаждались обратно. Получить кратковременный разряд можно посредством подачи импульсов, но это накладывает определенные ограничения на источники питания, поэтому обычно используется скоростное изменение положения инструмента, инициирующее образование новых проводящих мостов. Для гарантированного охлаждения испаряемого металла и его удаления из зоны контакта используются диэлектрические жидкости – керосин или машинное масло – в которые и погружается заготовка. Жидкий диэлектрик влияет на расстояние пробоя, снижая его до 150 мкм и меньше, чем ограничивает зону контакта.

Станки для электроэрозионной обработки

Очевидно, что использовать для снижения длительности разряда импульсные источники тока выходит дороже, нежели спроектировать автоматизированный модуль перемещения эрозионного инструмента относительно заготовки. Устройство перемещения снабжается дополнительной системой мониторинга расстояния между проволокой и металлом заготовки: при большом расстоянии, когда не происходит образования достаточного количество проводящих мостов, инструмент приближается. Если же расстояние пробоя слишком низкое – резко возрастает вероятность активного распределения разряда, что влечет за собой слабый нагрев и, как следствие, неэффективность метода.

Тугоплавкая проволока

Для некоторых электроэрозионных техпроцессов используется не латунная и тугоплавкая проволока, а толстый стержень, объем которого позволяет получать оттиски на металле заготовки, или диск, вращение которого позволяет прорезать глубокие щели или обрабатывать чрезмерно прочные материалы. Электроэрозионные станки отечественного производства отличаются широким модельным рядом и рассчитаны на обработку деталей различного размера.

Катод-анодная и анодно-механическая системы

Электроэрозионная технология включает в себя несколько методов, одни из которых позволяют выполнять сложнофасонные прожиги и вырезать отверстия, другие – разделять заготовки, выполненные из жаропрочных аустенитных сталей или титановых соединений.

В основе метода электроискровой обработки лежит образование катод-анодной системы, где заготовка заряжается положительно, а эрозионный инструмент – отрицательно. При этом в месте контакта возникает дуговой разряд короткой продолжительности. Температура в середине дуги минимально достигает 8 тысяч градусов. Поскольку расстояние пробоя достаточно низкое, разница в температуре поверхности металла в зоне контакта и в центре дуги небольшая.

Другой разновидностью электроэрозионной обработки в системе катод-анод является анодно-механическая технология, когда отрицательно заряжена не проволока, а диск или замкнутая лента. Диэлектрическая пленка в местах контакта вращающегося инструмента временно разрушается. В местах же открытия чистого металла образуются дуговые разряды, испаряющие тонкий поверхностный слой.

При электроимпульсной обработке сменяется полярность системы катод-анод. Образуемые дуговые разряды прерываются перемещением инструмента и отключением тока. Средняя температура разряда достигает 5000 градусов.

Электроэрозионные станки на практике

Электроэрозионная технология применяется, как правило, когда обработка на традиционных механических станках затруднена или нерентабельна из-за отходов, повышенной твердости материала основы.

После изобретения электроэрозионной технологии она сразу же получила широкое распространение, как экономичная и производительная, но вскоре из-за сложности автоматизации техпроцесса популярность метода упала, уступив место механической обработке на ЧПУ. Сегодня, когда производственники ощутили, что отечественная промышленность не может себе позволить массово проектировать высокопрецизионные техпроцессы с использованием современных плазменных или лазерных технологий, многие снова обратились к электроэрозионным станкам. Несмотря на возраст технологии, она до сих пор зачастую оказывается более удобной для создания объемных деталей сложной формы, например лопастей турбин, валов или пресс-форм, поскольку стоимость электроэрозионного станка намного ниже. Кроме того, установки лазерной и плазменной обработки, как правило, рассчитаны на заготовки небольших размером, что резко ограничивает их применение к тяжелой промышленности. Т.о. возрождение электроэрозионной обработки стало своего рода ответом отечественной промышленности зарубежным технологиям. Часть I


Оставить комментарий с помощью

Вопросы-ответы
Александр Гуща, автор статьи14.09.2009

К сожалению, Вы правы - досадная неточность облачилась в большую глупость. Очевидно, что ЭО не сложно автоматизировать, и без ЧПУ там не обошлось. Под переходом на механическую обработку имелась в виду тенденция массового внедрения лазерно-плазменных станков с ЧПУ нового поколения, построенных на экспертных системах.

Дмитрий Адров13.09.2009

Непонятно, откуда автор взял то, что электроэрозионная обработка уступила место обработке на станках с ЧПУ. Это ужасающая глупость, вводящая читателей в заблуждение. Во-1, нет никакой сложности в автоматизации электроэрозионной техники. За 22 года я не видел ни одного электроэрозионного станка не оснащенным ЧПУ. Во-2, как правило с помощью электроэрозионной и механической обработки решают разные задачи.

Видео
Мульчер 2
Малогабаритная установка Кондор
Розлив и упаковка напитков